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1. Main properties of the Toda Lattice

B Equations of motion of the (finite-dimensional) Toda Lattice (TL) read:

ẍk = exk+1−xk − exk−xk−1 , 1 ≤ k ≤ N,

with x0 = ∞, xN+1 = −∞ (open-end boundary conditions) or x0 = xN , xN+1 = x1

(periodic boundary conditions).

B If one introduces the variables bk = ẋk, ak = exk+1−xk , then TL is governed by{
ḃk = ak − ak−1,

ȧk = ak(bk+1 − bk),
(1)

with a0 = aN = 0 (open-end boundary conditions) or a0 = aN , bN+1 = b1 (periodic
boundary conditions).

B The phase-space of TL is

T := R2N(a1, ..., aN , b1, ..., bN),

in the periodic case, and

T0 := R2N−1(a1, ..., aN−1, b1, ..., bN) = {(a, b) ∈ T : aN = 0},

in the open-end case.

B TL is tri-Hamiltonian: there exist three Hamiltonian formulations w.r.t. three
independent but compatible Poisson brackets. In particular, the first two Hamiltonian
formulations are:

(1) TL is Hamiltonian on the Poisson manifold (T , {·, ·}1) (on (T0, {·, ·}1) in the open-
end case) with the Hamiltonian function

H =
1

2

N∑
k=1

b2
k +

N∑
k=1

ak,

where the Poisson bracket {·, ·}1 is defined by

{bk, ak}1 = −ak, {ak, bk+1}1 = −ak. (2)
1
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(2) TL is Hamiltonian on the Poisson manifold (T , {·, ·}2) (on (T0, {·, ·}2) in the open-
end case) with the Hamiltonian function

H =
N∑

k=1

bk,

where the Poisson bracket {·, ·}2 is defined by

{bk, ak}2 = −bkak, {ak, bk+1}2 = −akbk+1, (3)

{bk, bk+1}2 = −ak, {ak, ak+1}2 = −akak+1. (4)

?

Exercise 1. Prove that the functions

C1 =
N∏

k=1

ak, C2 =
N∑

k=1

bk,

are two polynomial Casimir functions of (T , {·, ·}1).

?

B TL has several Lax representations and it admits an r-matrix structure. A Lax
representation of TL is:

L̇(λ) = [L(λ), B(λ)] = −[L(λ), A(λ)], λ ∈ C,

with

L(λ) = λ−1

N∑
k=1

akEk,k+1 +
N∑

k=1

bkEk,k + λ
N∑

k=1

Ek+1,k,

B(λ) =
N∑

k=1

bkEk,k + λ
N∑

k=1

Ek+1,k,

A(λ) = λ−1

N∑
k=1

akEk,k+1,

where the matrices Ej,k, (Ei,j)k,` = δikδj`, form a basis of gl(N). We set EN+1,N = E1,N ,
EN,N+1 = EN,1 in the periodic case and EN+1,N = EN,N+1 = 0 and λ = 1 in the open-end
case.

Spectral invariants of the Lax matrix L(λ) serve as integrals of motion of TL. All
spectral invariants are in involution w.r.t. the brackets (2) and (3,4).

B As every multi-Hamiltonian and completely integrable system, TL belongs to a
whole integrable hierarchy. Each flow of this hierarchy may be solved by means of a
matrix factorization (finite-dimensional analog of the inverse scattering method). This is
the ground for TL do deliver a transparent model for the integrable discretization problem.
The resulting discretization shares invariant Poisson structures and integrals of motion
with TL. In short, it belongs to the hierarchy attached to TL.
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2. An integrable discretization of the Toda Lattice

B The discrete Toda lattice (dTL) is governed by the following discrete Lax equation:

1+ εL̃(λ) = B−1(λ; ε)(1+ εL(λ))B(λ; ε) = A(λ; ε)(1+ εL(λ))A−1(λ; ε), (5)

where

B(λ; ε) =
N∑

k=1

βkEk,k + ελ
N∑

k=1

Ek+1,k,

A(λ; ε) = 1+ ελ−1

N∑
k=1

αkEk,k+1.

• Tilde denotes the shift t 7→ t + ε in the discrete time εZ; ε is a time step.
• The coefficients βk and αk are uniquely defined, for ε small enough, by the system{

βk + ε2αk−1 = 1 + εbk,

βkαk = ak.
(6)

We have: βk = 1 + εbk + O(ε2).

Remark 1. In the open-end case system (6) is uniquely solvable not only for small ε.
Indeed, one obtains explicit expressions in terms of continued fractions:

β1 = 1 + εb1,

β2 = 1 + εb2 −
ε2a1

1 + εb1

,

...

βN = 1 + εbN − ε2aN−1

1 + εbN−1 −
ε2aN−2

1 + εbN−2 − ...

− ε2a1

1 + εb1

.

Remark 2. The Lax equation (5) is equivalent the following map (a, b) 7→ (ã, b̃):
b̃k = bk + ε

(
ak

βk

− ak−1

βk−1

)
,

ãk = ak
βk+1

βk

.

(7)

3. Localizing changes of variables

B dTL (7), when compared with its continuous limit TL (1), has one unpleasent
property: equations are non-local because of the coefficients βk and αk. The functions βj

depend (implicitly) on all aj, bj in the periodic case and (explicitly) on all aj with j < k
and all bj with j ≤ k in the open-end case.

B A way to solve this drawback is the notion of localizing changes of variables.
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• Consider a lattice system with local interactions between neighboring variables:

ẋk = fk mod m(x) = f(xk, xk±1, ..., xk±s). (8)

Here s ∈ N is the locality radius and m ∈ N is the number of fields of the lattice
system. Note that TL (1) has (s, m) = (1, 2).

• Suppose to have integrable difference equations (discretizing (8)) of the form

x̃k = xk + εΦk(x; ε), (9)

where Φk depends on all xj.

• Problem: To find changes of variables X 7→ x which are close to the identity and
such that equations (9) take the form

X̃k = Xk + εΨk mod m(X, X̃; ε), Ψk mod m(X, X̃; 0) = fk mod m(x), (10)

where Ψk depends only on Xj, X̃j with |j − k| ≤ s. Such implicit local equations
are much better suited for the purposes of numerical simulation.

• It is by no means evident that such localizing variables exist. They are usually
defined by the formulas

xk = Xk + εFk mod m(X; ε), (11)

with local functions Fk depending only on Xj with |j−k| ≤ s. The inverse change
of variable x 7→ X is always described by non-local formulas.

Remark 3. Nothing guarantees a priori that the pull-back of (8) under the change of
variables (11) will be given by local formulas. Nevertheless it often turns out to be the
case. This is a way to produce new one-parameter families of integrable deformations (or
modifications) of (8). See Exercise 4.

Nothing guarantees a priori that pull-backs of local Poisson structures under the change
of variables (11) are also given by local formulas. In the multi-Hamiltonian cases it often
turns out that pull-backs of certain linear combinations of invariant Poisson brackets are
local again. See Exercise 3.

4. Localizing changes of variables for the Toda lattice

B The localizing change of variables for dTL (7) is given by the map T (A, B) 7→ T (a, b)
defined by {

bk = Bk + εAk−1,

ak = Ak(1 + εBk).
(12)

Remark 4. Note that formulas (12) coincide with (6) upon the identication

βk = 1 + εBk, αk = Ak. (13)

Thus, in the coordinates (A, B) the functions αk and βk acquire local expressions.
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?

Exercise 2. Prove that the pull-back of dTL (7) under the change of variables (12) is
given by the following local equations:{

B̃k = Bk + ε(Ak − Ãk−1),

Ãk(1 + εB̃k) = Ak(1 + εBk+1).

?

Exercise 3.

(1) Prove that the change of variables (12) is Poisson w.r.t. the brackets

{Bk, Ak} = −Ak(1 + εBk), {Ak, Bk+1} = −Ak(1 + εBk+1), (14)

if the space T (a, b) is equipped with the bracket

{·, ·}1 + ε{·, ·}2,

where {·, ·}1 and {·, ·}2 are defined in (2) and (3,4).

(2) Consider the pull-backs under the change of variables (12) of the Poisson bracket
{·, ·}1 (instead of the combination {·, ·}1 + ε{·, ·}2). Verify that in this case pull-
backs are described by highly non-local and non-polynomials formulas.

Hint: Calculate the Poisson brackets in the following natural order:

{B1, A1},
{B1, B2}, {A1, B2},
{B1, A2}, {A1, A2}, {B2, A2},
{B1, B3}, {A1, B3}, {B2, B3}, {A2, B3},

. . .

In the case (1) expressions for the pairwise Poisson brackets of the quantities (A, B)
quickly stabilize to (14).

?

Exercise 4. Prove that the pull-back of TL (1) under the change of variables (12) gives
the following modified TL: {

Ḃk = (1 + εBk)(Ak − Ak−1),

Ȧk = Ak(Bk+1 −Bk).

Hint: The above equations are Hamiltonian w.r.t. the brackets (14) with Hamiltonian
function

H = ε−1

N∑
j=1

(Bj + εAj−1).

.

?


	1. Main properties of the Toda Lattice
	2. An integrable discretization of the Toda Lattice
	3. Localizing changes of variables
	4. Localizing changes of variables for the Toda lattice

