EXAMPLE CLASS 2

(HAMILTONIAN APPROACH TO INTEGRABLE DISCRETIZATION)

MATTEO PETRERA AND YURI B. SURIS

Institut für Mathematik, MA 7-1, Technische Universität Berlin
Strasse des 17. Juni 136, 10623 Berlin, Germany

1. Main properties of the Toda Lattice

\triangleright Equations of motion of the (finite-dimensional) Toda Lattice (TL) read:

$$
\ddot{x}_{k}=e^{x_{k+1}-x_{k}}-e^{x_{k}-x_{k-1}}, \quad 1 \leq k \leq N,
$$

with $x_{0}=\infty, x_{N+1}=-\infty$ (open-end boundary conditions) or $x_{0}=x_{N}, x_{N+1}=x_{1}$ (periodic boundary conditions).
\triangleright If one introduces the variables $b_{k}=\dot{x}_{k}, a_{k}=e^{x_{k+1}-x_{k}}$, then TL is governed by

$$
\left\{\begin{array}{l}
\dot{b}_{k}=a_{k}-a_{k-1}, \tag{1}\\
\dot{a}_{k}=a_{k}\left(b_{k+1}-b_{k}\right),
\end{array}\right.
$$

with $a_{0}=a_{N}=0$ (open-end boundary conditions) or $a_{0}=a_{N}, b_{N+1}=b_{1}$ (periodic boundary conditions).
\triangleright The phase-space of TL is

$$
\mathcal{T}:=\mathbb{R}^{2 N}\left(a_{1}, \ldots, a_{N}, b_{1}, \ldots, b_{N}\right)
$$

in the periodic case, and

$$
\mathcal{T}_{0}:=\mathbb{R}^{2 N-1}\left(a_{1}, \ldots, a_{N-1}, b_{1}, \ldots, b_{N}\right)=\left\{(a, b) \in \mathcal{T}: a_{N}=0\right\},
$$

in the open-end case.
\triangleright TL is tri-Hamiltonian: there exist three Hamiltonian formulations w.r.t. three independent but compatible Poisson brackets. In particular, the first two Hamiltonian formulations are:
(1) TL is Hamiltonian on the Poisson manifold $\left(\mathcal{T},\{\cdot, \cdot\}_{1}\right)$ (on $\left(\mathcal{T}_{0},\{\cdot, \cdot\}_{1}\right)$ in the openend case) with the Hamiltonian function

$$
H=\frac{1}{2} \sum_{k=1}^{N} b_{k}^{2}+\sum_{k=1}^{N} a_{k},
$$

where the Poisson bracket $\{\cdot, \cdot\}_{1}$ is defined by

$$
\begin{equation*}
\left\{b_{k}, a_{k}\right\}_{1}=-a_{k}, \quad\left\{a_{k}, b_{k+1}\right\}_{1}=-a_{k} \tag{2}
\end{equation*}
$$

(2) TL is Hamiltonian on the Poisson manifold $\left(\mathcal{T},\{\cdot, \cdot\}_{2}\right)$ (on $\left(\mathcal{T}_{0},\{\cdot, \cdot\}_{2}\right)$ in the openend case) with the Hamiltonian function

$$
H=\sum_{k=1}^{N} b_{k},
$$

where the Poisson bracket $\{\cdot, \cdot\}_{2}$ is defined by

$$
\begin{array}{ll}
\left\{b_{k}, a_{k}\right\}_{2}=-b_{k} a_{k}, & \left\{a_{k}, b_{k+1}\right\}_{2}=-a_{k} b_{k+1} \\
\left\{b_{k}, b_{k+1}\right\}_{2}=-a_{k}, & \left\{a_{k}, a_{k+1}\right\}_{2}=-a_{k} a_{k+1} \tag{4}
\end{array}
$$

Exercise 1. Prove that the functions

$$
C_{1}=\prod_{k=1}^{N} a_{k}, \quad C_{2}=\sum_{k=1}^{N} b_{k},
$$

are two polynomial Casimir functions of $\left(\mathcal{T},\{\cdot, \cdot\}_{1}\right)$.
\qquad \star \qquad
\triangleright TL has several Lax representations and it admits an r-matrix structure. A Lax representation of TL is:

$$
\dot{L}(\lambda)=[L(\lambda), B(\lambda)]=-[L(\lambda), A(\lambda)], \quad \lambda \in \mathbb{C},
$$

with

$$
\begin{aligned}
& L(\lambda)=\lambda^{-1} \sum_{k=1}^{N} a_{k} E_{k, k+1}+\sum_{k=1}^{N} b_{k} E_{k, k}+\lambda \sum_{k=1}^{N} E_{k+1, k}, \\
& B(\lambda)=\sum_{k=1}^{N} b_{k} E_{k, k}+\lambda \sum_{k=1}^{N} E_{k+1, k}, \\
& A(\lambda)=\lambda^{-1} \sum_{k=1}^{N} a_{k} E_{k, k+1}
\end{aligned}
$$

where the matrices $E_{j, k},\left(E_{i, j}\right)_{k, \ell}=\delta_{i k} \delta_{j \ell}$, form a basis of $\mathfrak{g l}(N)$. We set $E_{N+1, N}=E_{1, N}$, $E_{N, N+1}=E_{N, 1}$ in the periodic case and $E_{N+1, N}=E_{N, N+1}=0$ and $\lambda=1$ in the open-end case.

Spectral invariants of the Lax matrix $L(\lambda)$ serve as integrals of motion of TL. All spectral invariants are in involution w.r.t. the brackets (2) and (3,4).
\triangleright As every multi-Hamiltonian and completely integrable system, TL belongs to a whole integrable hierarchy. Each flow of this hierarchy may be solved by means of a matrix factorization (finite-dimensional analog of the inverse scattering method). This is the ground for TL do deliver a transparent model for the integrable discretization problem. The resulting discretization shares invariant Poisson structures and integrals of motion with TL. In short, it belongs to the hierarchy attached to TL.

2. An integrable discretization of the Toda Lattice

\triangleright The discrete Toda lattice (dTL) is governed by the following discrete Lax equation:

$$
\begin{equation*}
\mathbb{1}+\epsilon \widetilde{L}(\lambda)=B^{-1}(\lambda ; \epsilon)(\mathbb{1}+\epsilon L(\lambda)) B(\lambda ; \epsilon)=A(\lambda ; \epsilon)(\mathbb{1}+\epsilon L(\lambda)) A^{-1}(\lambda ; \epsilon), \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
& B(\lambda ; \epsilon)=\sum_{k=1}^{N} \beta_{k} E_{k, k}+\epsilon \lambda \sum_{k=1}^{N} E_{k+1, k}, \\
& A(\lambda ; \epsilon)=\mathbb{1}+\epsilon \lambda^{-1} \sum_{k=1}^{N} \alpha_{k} E_{k, k+1} .
\end{aligned}
$$

- Tilde denotes the shift $t \mapsto t+\epsilon$ in the discrete time $\epsilon \mathbb{Z} ; \epsilon$ is a time step.
- The coefficients β_{k} and α_{k} are uniquely defined, for ϵ small enough, by the system

$$
\left\{\begin{array}{l}
\beta_{k}+\epsilon^{2} \alpha_{k-1}=1+\epsilon b_{k} \tag{6}\\
\beta_{k} \alpha_{k}=a_{k}
\end{array}\right.
$$

We have: $\beta_{k}=1+\epsilon b_{k}+O\left(\epsilon^{2}\right)$.

Remark 1. In the open-end case system (6) is uniquely solvable not only for small ϵ. Indeed, one obtains explicit expressions in terms of continued fractions:

$$
\begin{aligned}
& \beta_{1}=1+\epsilon b_{1}, \\
& \beta_{2}=1+\epsilon b_{2}-\frac{\epsilon^{2} a_{1}}{1+\epsilon b_{1}}, \\
& \ldots \\
& \beta_{N}=1+\epsilon b_{N}-\frac{\epsilon^{2} a_{N-1}}{1+\epsilon b_{N-1}-\frac{\epsilon^{2} a_{N-2}}{1+\epsilon b_{N-2}-\quad \ddots}} .
\end{aligned}
$$

Remark 2. The Lax equation (5) is equivalent the following map $(a, b) \mapsto(\widetilde{a}, \widetilde{b})$:

$$
\left\{\begin{array}{l}
\widetilde{b}_{k}=b_{k}+\epsilon\left(\frac{a_{k}}{\beta_{k}}-\frac{a_{k-1}}{\beta_{k-1}}\right), \tag{7}\\
\widetilde{a}_{k}=a_{k} \frac{\beta_{k+1}}{\beta_{k}}
\end{array}\right.
$$

3. Localizing changes of variables

\triangleright dTL (7), when compared with its continuous limit TL (1), has one unpleasent property: equations are non-local because of the coefficients β_{k} and α_{k}. The functions β_{j} depend (implicitly) on all a_{j}, b_{j} in the periodic case and (explicitly) on all a_{j} with $j<k$ and all b_{j} with $j \leq k$ in the open-end case.
\triangleright A way to solve this drawback is the notion of localizing changes of variables.

- Consider a lattice system with local interactions between neighboring variables:

$$
\begin{equation*}
\dot{x}_{k}=f_{k \bmod m}(x)=f\left(x_{k}, x_{k \pm 1}, \ldots, x_{k \pm s}\right) \tag{8}
\end{equation*}
$$

Here $s \in \mathbb{N}$ is the locality radius and $m \in \mathbb{N}$ is the number of fields of the lattice system. Note that TL (1) has $(s, m)=(1,2)$.

- Suppose to have integrable difference equations (discretizing (8)) of the form

$$
\begin{equation*}
\widetilde{x}_{k}=x_{k}+\epsilon \Phi_{k}(x ; \epsilon), \tag{9}
\end{equation*}
$$

where Φ_{k} depends on all x_{j}.

- Problem: To find changes of variables $X \mapsto x$ which are close to the identity and such that equations (9) take the form

$$
\begin{equation*}
\widetilde{X}_{k}=X_{k}+\epsilon \Psi_{k \bmod m}(X, \widetilde{X} ; \epsilon), \quad \Psi_{k \bmod m}(X, \widetilde{X} ; 0)=f_{k \bmod m}(x), \tag{10}
\end{equation*}
$$

where Ψ_{k} depends only on X_{j}, \widetilde{X}_{j} with $|j-k| \leq s$. Such implicit local equations are much better suited for the purposes of numerical simulation.

- It is by no means evident that such localizing variables exist. They are usually defined by the formulas

$$
\begin{equation*}
x_{k}=X_{k}+\epsilon F_{k \bmod m}(X ; \epsilon) \tag{11}
\end{equation*}
$$

with local functions F_{k} depending only on X_{j} with $|j-k| \leq s$. The inverse change of variable $x \mapsto X$ is always described by non-local formulas.
Remark 3. Nothing guarantees a priori that the pull-back of (8) under the change of variables (11) will be given by local formulas. Nevertheless it often turns out to be the case. This is a way to produce new one-parameter families of integrable deformations (or modifications) of (8). See Exercise 4.

Nothing guarantees a priori that pull-backs of local Poisson structures under the change of variables (11) are also given by local formulas. In the multi-Hamiltonian cases it often turns out that pull-backs of certain linear combinations of invariant Poisson brackets are local again. See Exercise 3.

4. Localizing changes of variables for the Toda lattice

\triangleright The localizing change of variables for dTL (7) is given by the map $\mathcal{T}(A, B) \mapsto \mathcal{T}(a, b)$ defined by

$$
\left\{\begin{array}{l}
b_{k}=B_{k}+\epsilon A_{k-1}, \tag{12}\\
a_{k}=A_{k}\left(1+\epsilon B_{k}\right) .
\end{array}\right.
$$

Remark 4. Note that formulas (12) coincide with (6) upon the identication

$$
\begin{equation*}
\beta_{k}=1+\epsilon B_{k}, \quad \alpha_{k}=A_{k} . \tag{13}
\end{equation*}
$$

Thus, in the coordinates (A, B) the functions α_{k} and β_{k} acquire local expressions.
\qquad \star \qquad

Exercise 2. Prove that the pull-back of dTL (7) under the change of variables (12) is given by the following local equations:

$$
\left\{\begin{array}{l}
\widetilde{B}_{k}=B_{k}+\epsilon\left(A_{k}-\widetilde{A}_{k-1}\right), \\
\widetilde{A}_{k}\left(1+\epsilon \widetilde{B}_{k}\right)=A_{k}\left(1+\epsilon B_{k+1}\right) .
\end{array}\right.
$$

\qquad \star \qquad

Exercise 3.

(1) Prove that the change of variables (12) is Poisson w.r.t. the brackets

$$
\begin{equation*}
\left\{B_{k}, A_{k}\right\}=-A_{k}\left(1+\epsilon B_{k}\right), \quad\left\{A_{k}, B_{k+1}\right\}=-A_{k}\left(1+\epsilon B_{k+1}\right) \tag{14}
\end{equation*}
$$

if the space $\mathcal{T}(a, b)$ is equipped with the bracket

$$
\{\cdot, \cdot\}_{1}+\epsilon\{\cdot, \cdot\}_{2},
$$

where $\{\cdot, \cdot\}_{1}$ and $\{\cdot, \cdot\}_{2}$ are defined in (2) and (3,4).
(2) Consider the pull-backs under the change of variables (12) of the Poisson bracket $\{\cdot, \cdot\}_{1}$ (instead of the combination $\{\cdot, \cdot\}_{1}+\epsilon\{\cdot, \cdot\}_{2}$). Verify that in this case pullbacks are described by highly non-local and non-polynomials formulas.

Hint: Calculate the Poisson brackets in the following natural order:

$$
\begin{aligned}
& \left\{B_{1}, A_{1}\right\}, \\
& \left\{B_{1}, B_{2}\right\},\left\{A_{1}, B_{2}\right\}, \\
& \left\{B_{1}, A_{2}\right\},\left\{A_{1}, A_{2}\right\},\left\{B_{2}, A_{2}\right\}, \\
& \left\{B_{1}, B_{3}\right\},\left\{A_{1}, B_{3}\right\},\left\{B_{2}, B_{3}\right\},\left\{A_{2}, B_{3}\right\},
\end{aligned}
$$

In the case (1) expressions for the pairwise Poisson brackets of the quantities (A, B) quickly stabilize to (14).
\qquad \star \qquad
Exercise 4. Prove that the pull-back of TL (1) under the change of variables (12) gives the following modified TL:

$$
\left\{\begin{array}{l}
\dot{B}_{k}=\left(1+\epsilon B_{k}\right)\left(A_{k}-A_{k-1}\right), \\
\dot{A}_{k}=A_{k}\left(B_{k+1}-B_{k}\right) .
\end{array}\right.
$$

Hint: The above equations are Hamiltonian w.r.t. the brackets (14) with Hamiltonian function

$$
H=\epsilon^{-1} \sum_{j=1}^{N}\left(B_{j}+\epsilon A_{j-1}\right) .
$$

\qquad * \qquad

